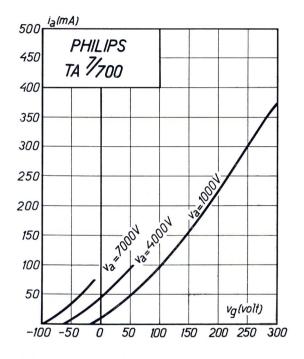
PHILIPS SENDERRÖHRE

TA $\frac{7}{700}$


Dies ist eine starke und billige Röhre für mittlere Leistung. Die Anodenspannung beträgt normalerweise 7000 Volt, jedoch lässt sich bei 4000 Volt noch ein guter Wirkungsgrad erzielen. Die folgende Tabelle ist für 7000 Volt Anodenspannung berechnet und gibt die Nutzleistung für verschiedene Werte des Wirkungsgrades an.

Grösse 1:3

Wirkungsgrad	30	40	50	60	70	0/0
Eingangsleistung	570	650	800	1000	1000	Watt
Nutzleistung	170	250	400	600	700	Watt
Anodenverlust	400	400	400	400	300	Watt

PHILIPS SENDERRÖHRE

TA $\frac{7}{700}$

Heizspannung.				•	•								$ u_f= ext{ca.} \ extbf{12,5} \ ext{V}$
Heizstrom							ï						$i_f=$ ca. 7,7 A
Sättigungsstrom													$i_s=450 \; \mathrm{m} \; \mathrm{A}$
Anodenspannung								,			÷		$\nu_a = 4000-7000 \text{ V}$
Anodenverlust													$w_a = 400 \text{ W}$
Anodenverlüst g	epri	üft	au	f									w_{at} = 500 W
Verstärkungsfact	or	•											g = ca. 75
Steilheit			•								•		S = ca. 1,7 mA/V
Innerer Widersta	and							•					$R_i = \text{ca. } \textbf{45000} \ \varOmega$
Sättigungsspannu	ng	in	de	r	Git	ter	fläc	he			•	•	$v_s^{}=$ ca. 500 V
Grösster Durchm	iess	er							•				d = 150 mm
Grösste Länge											٠		l = 350 mm